skip to main content


Search for: All records

Creators/Authors contains: "Talley, Lynne D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modeled water-mass changes in the North Pacific thermocline, both in the subsurface and at the surface, reveal the impact of the competition between anthropogenic aerosols (AAs) and greenhouse gases (GHGs) over the past 6 decades. The AA effect overwhelms the GHG effect during 1950–1985 in driving salinity changes on density surfaces, while after 1985 the GHG effect dominates. These subsurface water-mass changes are traced back to changes at the surface, of which ~70% stems from the migration of density surface outcrops, equatorward due to regional cooling by AAs and subsequent poleward due to warming by GHGs. Ocean subduction connects these surface outcrop changes to the main thermocline. Both observations and models reveal this transition in climate forcing around 1985 and highlight the important role of AA climate forcing on our oceans’ water masses.

     
    more » « less
    Free, publicly-accessible full text available September 22, 2024
  2. Abstract

    The core Argo array has operated with the design goal of uniform spatial distribution of 3° in latitude and longitude. Recent studies have acknowledged that spatial and temporal scales of variability in some parts of the ocean are not resolved by 3° sampling and have recommended increased core Argo density in the equatorial region, boundary currents, and marginal seas with an integrated vision of other Argo variants. Biogeochemical (BGC) Argo floats currently observe the ocean from a collection of pilot arrays, but recently funded proposals will transition these pilot arrays to a global array. The current BGC Argo implementation plan recommends uniform spatial distribution of BGC Argo floats. For the first time, we estimate the effectiveness of the existing BGC Argo array to resolve the anomaly from the mean using a subset of modeled, full-depth BGC fields. We also study the effectiveness of uniformly distributed BGC Argo arrays with varying float densities at observing the ocean. Then, using previous Argo trajectories, we estimate the Argo array’s future distribution and quantify how well it observes the ocean. Finally, using a novel technique for sequentially identifying the best deployment locations, we suggest the optimal array distribution for BGC Argo floats to minimize objective mapping uncertainty in a subset of BGC fields and to best constrain BGC temporal variability.

     
    more » « less
  3. Abstract

    The Weddell Gyre mediates carbon exchange between the abyssal ocean and atmosphere, which is critical to global climate. This region also features large and highly variable freshwater fluxes due to seasonal sea ice, net precipitation, and glacial melt; however, the impact of these freshwater fluxes on the regional carbon cycle has not been fully appreciated. Using a novel budget analysis of dissolved inorganic carbon (DIC) mass in the Biogeochemical Southern Ocean State Estimate, we highlight two freshwater‐driven transports. Where freshwater with minimal DIC enters the ocean, it displaces DIC‐rich seawater outwards, driving a lateral transport of 75 ± 5 Tg DIC/year. Additionally, sea ice export requires a compensating import of seawater, which carries 48 ± 11 Tg DIC/year into the gyre. Though often overlooked, these freshwater displacement effects are of leading order in the Weddell Gyre carbon budget in the state estimate and in regrouped box‐inversion estimates, with implications for evaluating basin‐scale carbon transport.

     
    more » « less
  4. Abstract

    The Argo array provides nearly 4000 temperature and salinity profiles of the top 2000 m of the ocean every 10 days. Still, Argo floats will never be able to measure the ocean at all times, everywhere. Optimized Argo float distributions should match the spatial and temporal variability of the many societally important ocean features that they observe. Determining these distributions is challenging because float advection is difficult to predict. Using no external models, transition matrices based on existing Argo trajectories provide statistical inferences about Argo float motion. We use the 24 years of Argo locations to construct an optimal transition matrix that minimizes estimation bias and uncertainty. The optimal array is determined to have a 2° × 2° spatial resolution with a 90-day time step. We then use the transition matrix to predict the probability of future float locations of the core Argo array, the Global Biogeochemical Array, and the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) array. A comparison of transition matrices derived from floats using Argos system and Iridium communication methods shows the impact of surface displacements, which is most apparent near the equator. Additionally, we demonstrate the utility of transition matrices for validating models by comparing the matrix derived from Argo floats with that derived from a particle release experiment in the Southern Ocean State Estimate (SOSE).

     
    more » « less
  5. Abstract

    Despite technological advances over the last several decades, ship-based hydrography remains the only method for obtaining high-quality, high spatial and vertical resolution measurements of physical, chemical, and biological parameters over the full water column essential for physical, chemical, and biological oceanography and climate science. The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) coordinates a network of globally sustained hydrographic sections. These data provide a unique data set that spans four decades, comprised of more than 40 cross-ocean transects. The section data are, however, difficult to use owing to inhomogeneous format. The purpose of this new temperature, salinity, and dissolved oxygen data product is to combine, reformat and grid these data measured by Conductivity-Temperature-Depth-Oxygen (CTDO) profilers in order to facilitate their use by a wider audience. The product is machine readable and readily accessible by many existing visualisation and analysis software packages. The data processing can be repeated with modifications to suit various applications such as analysis of deep ocean, validation of numerical simulation, and calibration of autonomous platforms.

     
    more » « less